2017-2018年北京与上海大数据分析研究报告.pptx
2017-2018年北京与上海大数据分析研究报告,2017年12月4日,北京与上海,帝都与魔都,承载了无数人的梦想与现实,悲欢与离合。,这两个历史悠久的城市,在城市形态,人文风貌,未来发展各具特色,到底哪个是你的菜呢?,为什么上海比北京更好看?,为什么上海比北京更好看?,城市管理水平旗鼓相当,城市公共空间上海宜人北京吓人,城市绿地景观旗鼓相当各有千秋,城市风貌(管理)上海小胜北京,城市格局上海优于北京,京沪之间的比较从未停止,更好?谁活的,北京人,上海人,歌词,基于心理认知的京沪品质对比,研究工具与方法,19.70%,14.40%,6.20%,7.20%,“离开”相对词频,“留下”相对词频,22.00%,21.60%14.40%,41.20%,“哭”相对词频,“笑”相对词频,2.30%,8.20%,“恨”相对词频,“爱”相对词频,北京上海38.60%29.90%,差异显著,城市心理认知:动作与描述差异显著,17.40%,28.30%,26.70%,20.60%,15.50%,21.60%,负信任感,负归属感,正成就感,差异显著,北京,上海,城市心理认知:身份认同,-12.26,28.66,29.41,35.63,-150.00,-50.00,50.00,2000年前,2000-2005年,权情,22.20,1.232.120.00,16.84,-11.68-100.00,-84.62,2006-2010年,2011-2015年,2016年至今,权情,加 北京感值,加上海感值,城市心理认知:情感表达100.00,地铁,刷卡数据,基于行为感知的京沪品质对比,北京地铁全天客流变化,上海地铁全天客流变化,0.30.250.20.150.10.050,10-20,20-30,30-40,40-50,50-60,60-70,70-80,80-90,90-100,100-110,110-120,北京,上海,通勤时间通勤时间(分钟),9990,9725,9702,8708,8260,8205,8158,7552,7041,6519,5689,5637,5587,5557,13574,10355,8641,8077,7276,6503,5836,5553,5107,4620,4512,3402,2058,1630,长通勤者的线路分布北京 上海,长通勤:通勤时间在1-2小时相比北京,上海的长距离通勤者在某些线路中比例更高,长距离通勤,北京地铁出行人群聚类,星期一,聚类一 0.0 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.1,0.0,0.0,0.0,0.0,星期一 聚类二,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.1,0.0,0.0,0.0,0.0,4.3%,星期二星期三星期四星期五星期六星期日,9.7% 0.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.80.80.80.40.10.1,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.10.0,0.40.40.40.20.10.0,0.20.20.10.10.00.0,0.10.10.10.00.00.0,0.10.10.10.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,星期二星期三星期四星期五星期六星期日,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.10.10.10.00.00.0,0.70.80.80.30.10.1,0.00.10.10.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.10.10.10.00.10.0,0.20.20.20.10.10.0,0.20.20.20.10.00.0,0.10.10.10.00.00.0,0.10.10.10.00.00.0,0.10.10.10.00.00.0,0.00.00.00.00.00.0,星期一,聚类三 0.0 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3,0.1,0.0,0.0,0.0,0.0,0.0,星期一 聚类九,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.1,0.0,0.0,0.0,0.0,0.0,5.9%,星期二星期三星期四星期五星期六星期日,2.7% 0.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.10.00.00.00.00.0,0.80.80.80.40.10.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.10.10.10.00.00.0,0.70.70.60.30.10.0,0.10.10.10.10.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,星期二星期三星期四星期五星期六星期日,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.80.90.80.40.10.1,0.00.00.10.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.10.10.10.00.00.0,0.30.30.30.10.10.0,0.20.20.20.10.00.0,0.10.10.10.00.00.0,0.10.10.10.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,星期一,聚类四 0.0 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,星期一 聚类七,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.0,0.0,0.0,0.0,0.0,0.0,3.8%,星期二星期三星期四星期五星期六星期日,3.9% 0.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.10.5,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.6,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.0,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,星期二星期三星期四星期五星期六星期日,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.10.10.10.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.00.00.00.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.10.10.00.00.00.0,0.20.31.00.10.10.1,0.10.10.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,星期一,聚类五 0.0 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,星期一 聚类八,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,4.6%,星期二星期三星期四星期五星期六星期日,2.7% 0.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.10.00.00.00.00.0,0.10.10.10.00.00.0,0.10.10.00.00.00.0,0.10.00.00.00.00.0,0.10.00.00.00.00.0,0.10.00.00.00.00.0,0.10.10.00.00.00.0,0.10.10.10.00.00.0,1.00.10.10.00.00.0,0.10.10.10.00.00.0,0.10.00.00.00.00.0,0.10.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,星期二星期三星期四星期五星期六星期日,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.10.10.50.00.00.0,0.00.00.10.00.00.0,0.00.00.10.00.00.0,0.10.10.60.00.00.0,0.10.10.00.00.00.0,0.00.00.10.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,星期一,聚类六 0.0 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,星期一 聚类十,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,3.1%,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,0,1,2,3,4,5,6,7,8,9 10 11 12 13 14 15 16 17 18 19 20 21 22 23,星期二星期三星期四星期五星期六星期日,59.3% 0.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,星期二星期三星期四星期五星期六星期日,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.11.0,0.00.00.00.00.00.0,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.1,0.00.00.00.00.00.0,0.00.00.00.00.00.0,0.00.00.00.00.00.0,上海地铁出行人群聚类,23.2%,54.9%,京沪不加班人群分布,失落的上海人悲催的北京人,该怎么比?,更好的就业机会更好的公共服务,好城市的吸引力在哪?,京沪职住通勤便利度对比,京沪生活便利度(设施密度)对比,便利店,菜市场,电影院,健身中心,社区卫生中心,书店,药房,游乐场,游泳馆,静安区,黄浦区,虹口区,长宁区,徐汇区,杨浦区,普陀区,闸北区,东城区,西城区,丰台区,朝阳区,海淀区,石景山区,通州区,京沪居民服务设施可达性对比2.502.001.501.000.500.00,北京,上海,便利度方面,北京比上海全面落后,京沪对比,越便利就越幸福?,0.5350.53,东城区,西城区,朝阳区,丰台区,通州区,海淀区 石景山区,北京各个乡镇街道的情绪值北京各区情绪值0.560.5550.550.5450.54,情绪值>0.5610.544<情绪值0.561情绪值0.544,0.590.580.570.560.550.540.530.520.510.5,0,1,2,3,4,5,6,7,8,9,设施密度,0.590.580.570.560.550.540.530.520.510.5,0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,设施最短直线距离,0.590.580.570.560.550.540.530.520.510.5,0,2000,4000,6000,8000,10000,12000,14000,16000,通勤距离,0.590.580.570.560.550.540.530.520.510.5,0,2000,4000,6000,8000,10000 12000 14000 16000 18000,人口密度,情绪与便利度的关系,便利度与情感,显著相关,如何衡量情绪?,城市基因,破解城市的密码,城市形态数据与指标,各城市/区县/街道空间形态指标,30.0020.00,40.00,60.0050.00,京沪各区道路交叉口密度,4.002.000.00,12.0010.008.006.00,10.000.0014.00,京沪各区路网密度,0.51,0.46,0.46,0.45,0.43,0.39,0.37,0.37,0.36,0.34,0.33,0.32,0.32,0.31,0.28,0.200.100.00,0.500.400.30,京沪各区建筑密度,4.37,3.88,3.26,3.23,2.97,2.77,2.72,2.60,2.18,2.07,2.02,1.98,1.95,1.86,1.52,0.500.000.60,1.00,2.502.001.50,3.503.00,5.004.504.00,京沪各区容积率,城市形态数据与指标,城市生活便利度数据与指标,城市上海上海上海杭州上海成都深圳上海成都成都成都上海杭州上海上海深圳成都深圳杭州杭州杭州杭州,区静安区黄浦区虹口区下城区长宁区武侯区福田区闸北区青羊区金牛区锦江区徐汇区上城区普陀区杨浦区罗湖区成华区南山区拱墅区江干区滨江区西湖区,面积(平方公里)7.6920.4323.5329.5536.96122.0483.3929.3366.13106.8260.7154.8126.9455.4460.4782.87108.17182.7968.55203.1568.39317.38,人口2467884298918524765260966905711E+061E+068304968281401E+066904221E+063445941E+061E+069234219387851E+06551874998783319027820017,人口密度(万人/平方公里)3.22.13.61.81.91.11.62.81.31.11.121.32.32.21.10.90.60.80.50.50.3,职住比排名12111271031315211446201716225181989,通勤距离排名12378420111491613612172118221019515,新兴设施密度排名12345678910111213141516171819202122,城市职住通勤数据与指标,南京东路街道 道,外滩街,新江湾城街道,凌云路街道,上海职住通勤情况:以街道为单元长征镇,曹家渡街道,虹梅路街道,南京东路街道南京西路街道,外滩街道,桃浦镇新泾镇,打浦桥街道上海市各街道人口密度图(人/平方公里)殷行街道彭浦新村街道上海市各街道平均通勤距离图长桥街道,上海市各街道职住比图上海市各街道内部通勤比图,桃 桃 浦 浦 镇 镇,青羊区 府南街道 街 草市街道 成华区,武侯区龙舟路街道,督院水井坊街道,莲,金牛区抚琴 道建设路街道春熙路街道双楠街道 双桥子街道玉林街道新街道锦江区成都市各街道人口密度图(人/平方公里),春熙,苏坡街道,成龙路街道柳江街道成都市各街道平均通勤距离图,龙潭街道柏合镇,草市街道汪家拐街道路街道街街道跳伞塔街道府南街道成都市各街道职住比图苏坡街道,芳草街道,成都市各街道内部通勤比图,成都职住通勤情况:以街道为单元,香蜜湖街道办 华富街道办,福田街道办,西乡街道办,深圳市各街道平均通勤距离图,沙头角街道办,东门街道办桂园街道办深圳市各街道人口密度图(人/平方公里)平湖街道办 横岗街道办,深圳市各街道内部通勤比图,大鹏街道办,观澜街道办石岩街道办横岗街道办,盐田街道办清水河街道办沙头街道办深圳市各街道职住比图光明街道办,深圳职住通勤情况:以街道为单元沙井街道办,清波街道杭州市各街道人口密度图(人/平方公里),四季青街道西湖乡杭州市各街道职住比图,杭州市各街道平均通勤距离图,双浦镇,杭州市各街道内部通勤比图,留下街道,丁桥镇下沙街道,长河街道,杭州职住通勤情况:以街道为单元半山街道小河街道,1.210.80.60.40.20,0,5000,10000,15000,20000,人口密度,1.210.80.60.40.20,0,0.2,0.4,0.6,0.8,1,建筑密度,1.210.80.60.40.20,0,5,10,15,平均层数,1.210.80.60.40.20,0,2,4,6,8,10,容积率,1.210.80.60.40.20,0,100,200,300,400,交叉口密度,1.210.80.60.40.20,0,5,10,15,20,25,路网密度,职住比与城市形态的关系,1600014000120001000080006000400020000,0,100,200,300,400,交叉口密度,1600014000120001000080006000400020000,0,5,10,15,20,25,路网密度,1600014000120001000080006000400020000,0,2,4,6,8,10,容积率,1600014000120001000080006000400020000,0,5,10,15,平均层数,1600014000120001000080006000400020000,0,0.2,0.4,0.6,0.8,1,建筑密度,1600014000120001000080006000400020000,0,5000,10000,15000,20000,人口密度,通勤便利性(距离)与城市形态的关系,0,4.543.532.521.510.5,0,5000,10000,15000,20000,人口密度,0,4.543.532.521.510.5,0,0.2,0.4,0.6,0.8,1,建筑密度,0,4.543.532.521.510.5,0,2,4,6,8,10,12,14,16,平均层数,4.543.532.521.510.50,0,2,4,6,8,10,容积率,4.543.532.521.510.50,0,100,200,300,400,交叉口密度,4.543.532.521.510.50,0,5,10,15,20,25,路网密度,生活便利性(可达性)与城市形态的关系,空间感知,行为感知城市大数据,空间认知,品质评估,心理认知,行为空间数据,空间行为数据,城市基因的研究路径,编码,解码原子,人居环境科学空间形态 / 生活品质 / 主观感受,基因DNA,48,城市象限成立于2016年5月,致力于用数据科学改善中国城市治理。城市象限创始人茅明睿是城市规划行业资深的城市信息化、定量城市研究专家,曾在北京市城市规划设计研究院规划信息中心担任多年副主任职务,并联合发起了中国最有影响力的定量城市研究组织北京城市实验室(BCL)。城市象限有一支由城市规划、计算机、数学和地理信息系统等专业背景构成的城市数据科学团队,大多数成员都有海外背景。,城市象限成立以来负责了多项重大项目,包括参与了中国2016年和2017年最重要的两个城市规划项目:北京城市副中心通州总体规划的大数据与模型模拟专题研究,和雄安新区总体规划的标准工作营。,2017年城市象限创始人茅明睿在作为一席的第417位演讲者发表了“数据与城市正义”演讲,获得了上百万人次传播;2017年5月城市象限被选为第一批阿里云产业安全扶助计划扶助对象。,城市象限简介,THANK,YOU,