欢迎来到报告吧! | 帮助中心 分享价值,成长自我!

报告吧

换一换
首页 报告吧 > 资源分类 > PDF文档下载
 

从统计机器学习视角理解深度学习:算法、理论与可扩展计算.pdf

  • 资源ID:21241       资源大小:21.51MB        全文页数:286页
  • 资源格式: PDF        下载积分:25金币 【人民币25元】
快捷下载 游客一键下载
会员登录下载
三方登录下载: 微信开放平台登录 QQ登录  
下载资源需要25金币 【人民币25元】
邮箱/手机:
温馨提示:
用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,下载共享资源
 
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

从统计机器学习视角理解深度学习:算法、理论与可扩展计算.pdf

A Statistical Machine Learning Perspective of Deep Learning: Algorithm, Theory, Scalable ComputingMaruanAl-Shedivat, ZhitingHu, HaoZhang, and Eric XingPetumInc&Carnegie Melon University Network switches Infiniband Stochastic Gradient Descent / Back propagation Graphical Models RegularizedBayesian Methods Deep Learning Sparse Coding Sparse StructuredI/O Regression Large-Margin Spectral/Matrix Methods Nonparametric Bayesian Models CoordinateDescent L-BFGS Gibbs Sampling Metropolis-Hastings Mahout(MapReduce) Mllib(BSP) CNTK MxNet Tensorflow(Async) Network attached storage Flash storage Server machines Desktops/Laptops NUMA machines Mobile devices GPUs, CPUs, FPGA, TPU ARM-powered devices RAM Flash SSD Cloud compute(e.g. Amazon EC2) IoT networks Data centers Virtual machinesHadoop Spark MPI RPC GraphLab TaskModelAlgorithmImplementationSystemPlatformand HardwareElement of AI/Machine Learning©Petum,Inc.1ML vs DL©Petum,Inc.2PlanStatistical And Algorithmic Foundation and Insight of Deep LearningOn Unified Framework of Deep Generative ModelsComputational Mechanisms: Distributed Deep Learning Architectures ©Petum,Inc.3Part-IBasicsOutlineProbabilistic Graphical Models: BasicsAn overview of DL componentsHistorical remarks: early days of neural networksModern building blocks: units, layers, activations functions, loss functions, etc.Reverse-mode automatic diferentiation (aka backpropagation)Similarities and diferences between GMs and NNsGraphical models vs. computational graphsSigmoid Belief Networks as graphical modelsDeep Belief Networks and Boltzmann MachinesCombining DL methods and GMsUsing outputs of NNs as inputs to GMsGMs with potential functions represented by NNsNNs with structured outputsBayesian Learning of NNsBayesian learning of NN parametersDeep kernel learning©Petum,Inc.5OutlineProbabilistic Graphical Models: BasicsAn overview of DL componentsHistorical remarks: early days of neural networksModern building blocks: units, layers, activations functions, loss functions, etc.Reverse-mode automatic diferentiation (aka backpropagation)Similarities and diferences between GMs and NNsGraphical models vs. computational graphsSigmoid Belief Networks as graphical modelsDeep Belief Networks and Boltzmann MachinesCombining DL methods and GMsUsing outputs of NNs as inputs to GMsGMs with potential functions represented by NNsNNs with structured outputsBayesian Learning of NNsBayesian learning of NN parametersDeep kernel learning©Petum,Inc.6Fundamental questions of probabilistic modelingRepresentation:what is the joint probability distr. on multiple variables?!(#$,#&,#',#)How many state configurations are there?Do they all need to be represented?Can we incorporate any domain-specific insights into the representation?Learning:where do we get the probabilities from?Maximum likelihood estimation? How much data do we need?Are there any other established principles?Inference:if not al variables are observable, how to compute the conditional distribution of latent variables given evidence?Computing !(+|-)would require summing over 2/configurations of the unobserved variables©Petum,Inc.7What is a graphical model?A possible world of cellular signal transduction©Petum,Inc.8GM: structure simplifies representationA possible world of cellular signal transduction©Petum,Inc.9

注意事项

本文(从统计机器学习视角理解深度学习:算法、理论与可扩展计算.pdf)为本站会员(1+1)主动上传,报告吧仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知报告吧(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2022 报告吧 版权所有
经营许可证编号:宁ICP备17002310号 | 增值电信业务经营许可证编号:宁B2-20200018  | 宁公网安备64010602000642号


收起
展开