欢迎来到报告吧! | 帮助中心 分享价值,成长自我!

报告吧

换一换
首页 报告吧 > 资源分类 > PDF文档下载
 

金融科技公司会影响银行的经营吗?(英文版).pdf

  • 资源ID:120748       资源大小:554.40KB        全文页数:13页
  • 资源格式: PDF        下载积分:15金币 【人民币15元】
快捷下载 游客一键下载
会员登录下载
三方登录下载: 微信开放平台登录 QQ登录  
下载资源需要15金币 【人民币15元】
邮箱/手机:
温馨提示:
用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,下载共享资源
 
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

金融科技公司会影响银行的经营吗?(英文版).pdf

ContentslistsavailableatScienceDirect Pacific-BasinFinanceJournal journal homepage: Dofinancialtechnologyfirmsinfluencebankperformance? DinhHoangBachPhan a ,PareshKumarNarayan b, ,R.EkiRahman c , AkhisR.Hutabarat c a DepartmentofEconomicsandFinance,LaTrobeBusinessSchool,LaTrobeUniversity,Australia b CentreforFinancialEconometrics,DeakinBusinessSchool,DeakinUniversity,Melbourne,Australia c BankIndonesiaInstitute,BankIndonesia,Indonesia ARTICLEINFO Keywords: Financialtechnology Bankperformance Predictability Estimator ABSTRACT Wedevelopahypothesisthatthegrowthoffinancialtechnology(FinTech)negativelyinfluences bankperformance.WestudytheIndonesiamarket,whereFinTechgrowthhasbeenimpressive. Usingasampleof41banksanddataonFinTechfirms,weshowthatthegrowthofFinTechfirms negativelyinfluencesbankperformance.Wetestourhypothesisthroughmultipleadditionaltests and robustness tests, such as sensitivity to bank characteristics, effects of the Global Financial Crisis,andtheuseofalternativeestimators.OurmainconclusionthatFinTechnegativelypredicts bankperformanceholds. 1. Introduction The lastdecade or so has seen strong growth in digital innovation, especially in financialtechnology (FinTech). However, the traditional players (financial institutions) in the financial sector have only slowly begun to participate in new technological in- novations(BrandlandHornuf,2017).AlthoughtherehavebeenacquisitionsofFinTechfirmsbybanksrecently,mostFinTechstart- upsareindependentofbanksandareopentoinvestmentinterests.Becausemanybanks,apartfromthewell-knownbigbanks,still offerold-fashioned,costly,andcumbersomefinancialservices(BrandlandHornuf,2017),FinTechfirmshavetheopportunitytotake overseveralkeyfunctionsoftraditionalbanks(Lietal.,2017).Putdifferently,FinTechfirmsarelikelytotriggerasubstitutioneffect, wherebybanksarelikelytocedesomebusinessactivity.TowhatextentbankswillbeaffectedandhowmuchFinTechfirmswill replacetheactivitiescurrentlycontrolledbybanksisanempiricalissue. TheeffectofFinTechfirmsonbankscanbeexplainedbytheconsumertheory(AakerandKeller,1990)anddisruptiveinnovation theory(Christensen,1997).Theconsumertheorysuggeststhatnewservices(suchasthoseprovidedbyFinTechfirms)bymeetingthe sameconsumerdemandcanreplacetheoldservices(suchasthoseprovidedbytraditionalbanks).Basedonthedisruptiveinnovation theory,newentrantswhoapplyinnovativetechnologytoprovidemoreaccessibleandcost-effectivegoodsandservicescancreate competitioninthemarket.TheremitsofthesetheoriesarerelevanttoourstorywherenewentrantsareFinTechfirmsandestablished incumbentsaretraditionalbanksplementingthislineofthoughtistheworkofJunandYeo(2016),whoprovideamodelofa two-sided market with vertical constraints, emphasising on firm entry. Their model focusses on end-to-end and front-end service providersadistinctionthatwedonotmakepetitioninourstoryisgeneratedbynewentrantsregardlessofwhotheyare.Akey featureofFinTechfirmsisthattheyapplyinnovativetechnology toperformtaskspreviouslyreservedforbanks,suchaslending, payments,orinvestments(ChishtiandBarberis,2016;BrandlandHornuf,2017;Puschmann,2017).Recently,FinTechfirmshave doi/10.1016/j.pacfin.2019.101210 Received9November2018;Receivedinrevisedform1August2019;Accepted23September2019 Corresponding author at: Centre for Financial Econometrics, Deakin Business School, Deakin University, 221 Burwood Highway, Burwood, Victoria3125,Australia. E-mailaddress:paresh.narayandeakin.edu.au(P.K.Narayan). Pacific-Basin Finance Journal 62 (2020) 101210 Available online 05 November 2019 0927-538X/ 2019 Elsevier B.V. All rights reserved. Tbeendevelopingpracticalapplicationstoimproveefficiencyinfinancialservicesacrossarangeofservices,including(butnotlimited to):contactlessandinstantpayments;assetmanagementservices;investmentandfinancialserviceadvice;andinformationanddata management/storage(VilleroydeGalhau,2016).Inthisvein,JagtianiandLemieux(2018)arguethatnon-banklenderscansecure softinformationrelatingtocreditworthiness.Thisserviceisconsideredvaluableforconsumersandsmallbusinessalike,particularly thosethatarecharacterizedbyweakcredithistory.Onthecontrary,banksoperateonoldinformationtechnologysystemandare perceived to be slow in adopting new technology (Hannan and McDowell, 1984; Laven and Bruggink, 2016; Brandl and Hornuf, 2017). The main conclusion, therefore, is that eventuallyFinTech firms can substitute the traditional banks by providing less ex- pensiveandmoreefficientservices.Ourhypothesis,therefore,isthatFinTechgrowthwillnegativelyinfluencebankperformance. Despitetheemergenceofdigitalinnovationanditsperceivedeffectonthefinancialindustry,theeffectofdigitalinnovationand FinTech growth on the financial system are less understood. Exceptions include: (a) Cumming and Schwienbacher (2016), who investigatethepatternofventurecapitalinvestmentinFinTechusingaglobalsampleoffirms;(b)HaddadandHornuf(2018),who test the determinants of the globalFinTech market; (c) Brandl and Hornuf (2017), who trace the transformation of the financial industryafterdigitalization;and(d)Lietal.(2017),whofocusonhowretailbankssharepricesreacttoFinTechstart-ups. Wetestourhypothesisusingbank-leveldatafromIndonesia.WeconsiderIndonesiabecause,amongemergingmarkets,itsFinTech growthhasbeenphenomenal,asshowninFig.1.ThistrendinthegrowthofFinTechfirmsmakesIndonesiaaninterestingcasestudyto analysehowFinTechinfluencesbankperformanceinanemergingmarketcontext.Ingeneral,weunderstandlittleabouthowFinTech impactsthebankingsector.Usingdatafrom41banks,ourpanelmodelsofthedeterminantsofbankingsectorperformancesuggestthat FinTechfirmshaveanegativeeffectonIndonesianbankperformance.FinTech,weshow,alsonegativelypredictsbankperformance. Specifically, we summarize our key findings as follows. First, we find thatFinTech reduces net interest income to total assets (NIM),net income tototal equities(ROE), netincome to totalassets (ROA),and yieldon earningassets (YEA) by0.38%, 7.30%, 1.73%,and0.38%oftheirsamplemeanvalues(reportedinTable1),respectively. Second, FinTech predicts bank performance. With every new FinTech firm introduced into the market, we find that FinTech negativelypredictsNIM,ROE,ROA,andYEAby0.53%,9.32%,2.07%,and0.48%oftheirsamplemeans,respectively.Third,wetest whetherbankcharacteristics,suchasmarketvalue(MV)andfirmage(FA)influencethewayFinTechinfluencesbankperformance. Wefindthattheydo.Specifically,theeffectofFinTechisstrongeron(a)largebankscomparedtosmallbanks,and(b)maturebanks comparedtoyounger (new) banks.We concludeour analysis bytesting whetherFinTechaffects bank performancedifferentlyfor state-ownedversusprivatebanks.WeshowthatFinTechhasabiggereffectonstate-ownedbanks. Weconfirmourresultsthroughmultiplerobustnesstests.Usingfourmeasuresofbankperformance,wetestthesensitivityofthe relationbetweenFinTechandbankperformancetomeasuresofperformance.Wefindnoevidencethatmeasuresofbankperformance mattertotherelationbetweenFinTechandperformance.WeexploretheeffectsofFinTechonbankperformancebyaskingwhether the wayFinTech affects performance is dependent on specific bank characteristics. By and large, we find thatFinTech negatively influencesperformanceregardlessofbanksizeandage,andwhilewedouncoversomepositiveeffectofFinTechforyoungerbanks, thereisnoevidencethatFinTechpredictsperformanceoftheseyoungerbanks.WeexplainthispositiveeffectbydrawingonGiunta andTrivieri(2007)andHallerandSiedschlag(2011).Theseauthorsfindthatyoungerfirmsadoptandusetechnologicalinnovations 0 20 40 60 80 100 120 140 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 Accummulated number of fintech firms Number of fintech firms established in a year Fig. 1.FinTechfirmsinIndonesiain1998-2017. ThisfigureplotsthenumberandaccumulatednumberofFinTechfirmsestablishedineachyearinIndonesiain19982017.Dataareobtainedfrom theFintechIndonesiaAssociation. D.H.B.Phan,etal. Pacific-Basin Finance Journal 62 (2020) 101210 2muchmoresuccessfully.Inaddition,intestingtheeffectsofFinTech,weutilizeawiderangeofcontrolvariablesconsistentwiththe bankingperformancedeterminantsliterature.TheroleofFinTechininfluencingperformancesurvivesthesetests.Wealsocheckfor thesensitivity of our results by (a)controlling for 2017 Global Financial Crisis (GFC) effects and (b) using a differentpanel data estimator.WeconcludethatthenegativeeffectofFinTechonbankperformanceholdsacrossalltheseadditionaltests. OurpapersmaincontributionistoshowhowFinTechinfluencesbankperformance.Therearenostudiesonthissubjectatpresent.Our paper,therefore,representsthefirstempiricalstudyexploringthehypothesisthatFinTechnegativelyinfluencesbankperformance.Using bank-leveldatafromIndonesia, 1 weshowthatFinTechnegativelyinfluencesbankperformanceandthatthisrelationisrobust. Thispaperisorganizedintothreeadditionalsections.WediscussthedataandtheempiricalframeworkinSectionII.Adiscussion oftheresultsappearsinSectionIII.Finally,SectionIVsetsforthourconcludingremarks. 2. Data and empirical framework Thissectionhastwoobjectives.First,wediscussthedata.Then,wepresenttheempiricalframeworkfortestingourhypothesis thatFinTechhasanegativeeffectonbankperformance. 2.1. Data Wecollectdatafrommultiplesources.ThedataonFinTechfirmsareobtainedfromFinTechIndonesiaAssociation. 2 Wecollect theannualnumberofFinTechfirmsregisteredtotheFinTechIndonesiaAssociation.TheFinTechfirmsarethosenewsupplyfirms andsettlementprocessesrelatedtothebankingsector,suchaslending,payments,personalfinancemanagement,crowdfunding,and cryptocurrencies.InIndonesia,thebulkoftheFinTechactivitiesarecenteredonlending(45%)followedbypayments(38%).Bank- level dataNIM,ROA,ROE,YEA, total assets (SIZE), ratio of equity to total assets (CAP), cost to income ratio (CTI), loan loss provision(LLP),annualgrowthofdeposits(DG),interestincomeshare(IIS),andfundingcost(FC)areobtainedfromDatastream. Ofthesedata,NIM,ROA,ROE,andYEAareproxiesforbankperformanceourdependentvariableinregressionmodel(1).Variables SIZE, CAP, CTI, LLP, DG, IIS, and FC are firm-specific control variables. We also use macroeconomic variablesgross domestic product(GDP)growthrateandinflation(INF)rateasadditionalcontrols.ThesedataareobtainedfromtheGlobalFinancialDa- tabase.Alldataareannualovertheperiod1998to2017.Specificdetails,includingvariabledefinitions,areprovidedinTable1. AdescriptionofourdatasetappearsinTable2.Selectedbasicstatisticsarereportedtoobtaininsightsonthedata.Thesestatistics arefortheentiresampleaswellasforbanksatthe25thand75thpercentiles.ThenumberofnewFinTechfirmsaverages7perannum overthe1998to2017period.Thebankperformancestatistics(foroursampleof41banks)revealthefollowing.AverageNIMis 4.94%perannumwhileROEis7.99%perannum.Bycomparison,ROAstandsat0.40%perannum.Moreover,YEAisvaluedatover 10%perannum.AnnualaverageCAP,ameasureofmarketcapitalization,isaround12%.Theseperformancestatistics,asexpected, arehigheratthe75thpercentilecomparedtothe25thpercentile.Amongthecontrolvariables,interestincomeis91.2%oftotal income,withaCTIofaround56%perannumforoursample.Growthofdepositsis16.32%perannum. Table 1 Variabledescription. Variable Definition Source Expectedsign FinTech Numberoffinancialtechnology(FinTech)companiesfounded FintechIndonesiaAssociation NIM Ratioofnetinterestincometototalassets Datastream ROA Ratioofnetincometototalassets Datastream ROE Ratioofnetincometototalequities Datastream YEA Yieldonearningassets Datastream SIZE Logoftotalasset($USmillion) Datastream +/ CAP Capitalratioequalsequityovertotalassets Datastream +/ CTI Cost-to-incomeratioequalstotalexpensesovertotalgeneratedrevenues Datastream LLP Loanlossprovisionsequalsloanlossprovisionsovertotalloans Datastream DG Annualgrowthofdeposits Datastream +/ IIS Interestincomeshareequalstotalinterestincomeovertotalincome Datastream FC Fundingcostequalsinterestexpensesoveraveragetotaldeposits Datastream GDP IndonesiaannualGDPgrowthrate GlobalFinancialDatabase + INF Indonesiaannualinflationrate GlobalFinancialDatabase +/ Thistablecontainsdescriptionsandsourcesofvariables. 1 TheliteratureonIndonesianbanksisrich.SeveralstudiesexaminedtheIndonesianbankperformance(Avilianietal.,2015;Wuetal.,2016; Ekananda, 2017a, 2017b; Irawan and Kacaribu, 2017; Ekananda, 2017a, 2017b; Shaban and James, 2018a, 2018b; Ibrahim, 2019), efficiency (Widiartietal.,2015;Anwar,2016;,PurwonoandYasin,2019),risk(Agusmanetal.,2008;Hidayat,Kakinaka,andMiyamoto2012;Agusman etal.,2014),stability(Mulyaningsihetal.,2016;Karimetal.,2016;Dienillahetal.,2018),andIslamicbanking(Pepinsky,2013;Gustianietal., 2010;Hidayatietal.,2017a,2017b;AnwarandAli,2018). 2 fintech.id. This data is not available to public. We obtained data from Bank Indonesia which was sourced from Asosiasi FinTech Indonesia(Aftech). D.H.B.Phan,etal. Pacific-Basin Finance Journal 62 (2020) 101210 32.2. Empiricalframework Our empirical model is motivated by the literature that estimates the determinants of bank performance (Dietrich and Wanzenried,2011,2014;Trujillo-Ponce,2013;KsterandPelster,2017;ShabanandJames,2018a,b).Weaugmentthisconventional modelofperformancedeterminantswiththeFinTechvariable.Ourregressionmodelis: = + + + + + + + + + + + + PER FinTech PER CAP SIZE CTI LLP DG IIS FC GDP INF i t t i t i t i t i t i t i t i t i t t t i t , 1 2 , 1 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 11 , WecollectdataforallIndonesianbanksfromDatastream.Dataavailabilityleadstoasampleof41banks.Oursampleofbanks excludesunlistedbankssince theyarelikelyto introducepotentialestimationbias. Indonesianbanksarerequired toreveal their performancethroughannualreports submittedtothecentralbanktheBankIndonesia.However,therearedifferencesbetween listedandunlistedIndonesianbanksinthelevelofriskdisclosurethatisconveyedintheirannualreports.Adheringtocapitalmarket regulation, listed firms commit to extensive public disclosures and transparency in showing their performance in order to attract investors for external funds. Unlisted firms, with fewer stakeholders, however, have lack of incentives and the absence of trans- parencywhenrevealingtheirperformanceinannualreports(GoktanandMuslu,2018). Ourdatasamplespans1998,whenthefirstFinTechfirmwasestablished,to2017.Atwo-stepgeneralizedmethodofmoments (GMM)systemdynamicpanelestimatorisemployedtotestthenullhypothesisthatFinTechnegativelyinfluencesbankperformance inIndonesia. SpecificdefinitionsandexpectedsignsoneachofthevariablesaresetforthinthelastcolumnofTable1.Webrieflydiscussthese relationshere.ThefirstcontrolvariableisCAP,measuredasequityscaledbytotalassets.Previousstudiesthattestthecapitalbank performancenexusfailtofindconclusiveevidenceonhowthisrelationunfolds.Somestudiesdocumentapositiveeffectofcapitalon bank performance (Berger, 1995; Holmstrom and Tirole, 1997; Jacques and Nigro, 1997; Rime, 2001; Iannotta et al., 2007a,b; MehranandThakor,2011;NaceurandOmran,2011;BergerandBouwman,2013),whileothersfindtheopposite(Altunbasetal., 2007; Lee and Hsieh, 2013) or mixed results (Dietrich and Wanzenried, 2014). Berger (1995) draws on the bankruptcy cost hy- pothesis to explain the relation between capital and bank profits. This hypothesis suggests that banks with a higher capital ratio increase their

注意事项

本文(金融科技公司会影响银行的经营吗?(英文版).pdf)为本站会员(幸福)主动上传,报告吧仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知报告吧(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2017-2022 报告吧 版权所有
经营许可证编号:宁ICP备17002310号 | 增值电信业务经营许可证编号:宁B2-20200018  | 宁公网安备64010602000642号


收起
展开